Copied to
clipboard

G = C42.143D6order 192 = 26·3

143rd non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.143D6, C6.1272+ 1+4, (C4xD12):46C2, (Q8xDic3):20C2, (C4xDic6):46C2, (D4xDic3):31C2, (C2xD4).176D6, C12:3D4.9C2, C4.4D4:14S3, (C2xQ8).163D6, C22:C4.36D6, C23.9D6:46C2, C2.51(D4oD12), (C2xC6).225C24, D6:C4.37C22, Dic3:4D4:34C2, C12.126(C4oD4), C12.23D4:23C2, C4.16(D4:2S3), (C4xC12).188C22, (C2xC12).505C23, (C6xD4).158C22, (C22xC6).55C23, C23.57(C22xS3), (C6xQ8).129C22, Dic3.39(C4oD4), C23.11D6:41C2, (C2xD12).266C22, C23.21D6:26C2, (C22xS3).97C23, C4:Dic3.235C22, C22.246(S3xC23), Dic3:C4.142C22, C3:4(C22.53C24), (C2xDic6).250C22, (C4xDic3).135C22, (C2xDic3).256C23, C6.D4.58C22, (C22xDic3).145C22, C2.81(S3xC4oD4), C6.192(C2xC4oD4), (C3xC4.4D4):17C2, C2.57(C2xD4:2S3), (S3xC2xC4).216C22, (C2xC4).198(C22xS3), (C2xC3:D4).63C22, (C3xC22:C4).67C22, SmallGroup(192,1240)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42.143D6
C1C3C6C2xC6C22xS3S3xC2xC4C23.9D6 — C42.143D6
C3C2xC6 — C42.143D6
C1C22C4.4D4

Generators and relations for C42.143D6
 G = < a,b,c,d | a4=b4=c6=1, d2=a2, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b, dbd-1=b-1, dcd-1=a2c-1 >

Subgroups: 608 in 236 conjugacy classes, 97 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xC6, C4xD4, C4xQ8, C22.D4, C4.4D4, C4.4D4, C4:1D4, C4xDic3, C4xDic3, Dic3:C4, C4:Dic3, C4:Dic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C2xDic6, S3xC2xC4, C2xD12, C22xDic3, C2xC3:D4, C6xD4, C6xQ8, C22.53C24, C4xDic6, C4xD12, Dic3:4D4, C23.9D6, C23.11D6, C23.21D6, D4xDic3, C12:3D4, Q8xDic3, C12.23D4, C3xC4.4D4, C42.143D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, 2+ 1+4, D4:2S3, S3xC23, C22.53C24, C2xD4:2S3, S3xC4oD4, D4oD12, C42.143D6

Smallest permutation representation of C42.143D6
On 96 points
Generators in S96
(1 65 37 71)(2 86 38 51)(3 61 39 67)(4 88 40 53)(5 63 41 69)(6 90 42 49)(7 95 57 83)(8 26 58 75)(9 91 59 79)(10 28 60 77)(11 93 55 81)(12 30 56 73)(13 29 45 78)(14 94 46 82)(15 25 47 74)(16 96 48 84)(17 27 43 76)(18 92 44 80)(19 52 33 87)(20 68 34 62)(21 54 35 89)(22 70 36 64)(23 50 31 85)(24 72 32 66)
(1 9 31 17)(2 60 32 44)(3 11 33 13)(4 56 34 46)(5 7 35 15)(6 58 36 48)(8 22 16 42)(10 24 18 38)(12 20 14 40)(19 45 39 55)(21 47 41 57)(23 43 37 59)(25 63 95 89)(26 70 96 49)(27 65 91 85)(28 72 92 51)(29 61 93 87)(30 68 94 53)(50 76 71 79)(52 78 67 81)(54 74 69 83)(62 82 88 73)(64 84 90 75)(66 80 86 77)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 6 37 42)(2 41 38 5)(3 4 39 40)(7 44 57 18)(8 17 58 43)(9 48 59 16)(10 15 60 47)(11 46 55 14)(12 13 56 45)(19 20 33 34)(21 24 35 32)(22 31 36 23)(25 80 74 92)(26 91 75 79)(27 84 76 96)(28 95 77 83)(29 82 78 94)(30 93 73 81)(49 85 90 50)(51 89 86 54)(52 53 87 88)(61 62 67 68)(63 66 69 72)(64 71 70 65)

G:=sub<Sym(96)| (1,65,37,71)(2,86,38,51)(3,61,39,67)(4,88,40,53)(5,63,41,69)(6,90,42,49)(7,95,57,83)(8,26,58,75)(9,91,59,79)(10,28,60,77)(11,93,55,81)(12,30,56,73)(13,29,45,78)(14,94,46,82)(15,25,47,74)(16,96,48,84)(17,27,43,76)(18,92,44,80)(19,52,33,87)(20,68,34,62)(21,54,35,89)(22,70,36,64)(23,50,31,85)(24,72,32,66), (1,9,31,17)(2,60,32,44)(3,11,33,13)(4,56,34,46)(5,7,35,15)(6,58,36,48)(8,22,16,42)(10,24,18,38)(12,20,14,40)(19,45,39,55)(21,47,41,57)(23,43,37,59)(25,63,95,89)(26,70,96,49)(27,65,91,85)(28,72,92,51)(29,61,93,87)(30,68,94,53)(50,76,71,79)(52,78,67,81)(54,74,69,83)(62,82,88,73)(64,84,90,75)(66,80,86,77), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,44,57,18)(8,17,58,43)(9,48,59,16)(10,15,60,47)(11,46,55,14)(12,13,56,45)(19,20,33,34)(21,24,35,32)(22,31,36,23)(25,80,74,92)(26,91,75,79)(27,84,76,96)(28,95,77,83)(29,82,78,94)(30,93,73,81)(49,85,90,50)(51,89,86,54)(52,53,87,88)(61,62,67,68)(63,66,69,72)(64,71,70,65)>;

G:=Group( (1,65,37,71)(2,86,38,51)(3,61,39,67)(4,88,40,53)(5,63,41,69)(6,90,42,49)(7,95,57,83)(8,26,58,75)(9,91,59,79)(10,28,60,77)(11,93,55,81)(12,30,56,73)(13,29,45,78)(14,94,46,82)(15,25,47,74)(16,96,48,84)(17,27,43,76)(18,92,44,80)(19,52,33,87)(20,68,34,62)(21,54,35,89)(22,70,36,64)(23,50,31,85)(24,72,32,66), (1,9,31,17)(2,60,32,44)(3,11,33,13)(4,56,34,46)(5,7,35,15)(6,58,36,48)(8,22,16,42)(10,24,18,38)(12,20,14,40)(19,45,39,55)(21,47,41,57)(23,43,37,59)(25,63,95,89)(26,70,96,49)(27,65,91,85)(28,72,92,51)(29,61,93,87)(30,68,94,53)(50,76,71,79)(52,78,67,81)(54,74,69,83)(62,82,88,73)(64,84,90,75)(66,80,86,77), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,6,37,42)(2,41,38,5)(3,4,39,40)(7,44,57,18)(8,17,58,43)(9,48,59,16)(10,15,60,47)(11,46,55,14)(12,13,56,45)(19,20,33,34)(21,24,35,32)(22,31,36,23)(25,80,74,92)(26,91,75,79)(27,84,76,96)(28,95,77,83)(29,82,78,94)(30,93,73,81)(49,85,90,50)(51,89,86,54)(52,53,87,88)(61,62,67,68)(63,66,69,72)(64,71,70,65) );

G=PermutationGroup([[(1,65,37,71),(2,86,38,51),(3,61,39,67),(4,88,40,53),(5,63,41,69),(6,90,42,49),(7,95,57,83),(8,26,58,75),(9,91,59,79),(10,28,60,77),(11,93,55,81),(12,30,56,73),(13,29,45,78),(14,94,46,82),(15,25,47,74),(16,96,48,84),(17,27,43,76),(18,92,44,80),(19,52,33,87),(20,68,34,62),(21,54,35,89),(22,70,36,64),(23,50,31,85),(24,72,32,66)], [(1,9,31,17),(2,60,32,44),(3,11,33,13),(4,56,34,46),(5,7,35,15),(6,58,36,48),(8,22,16,42),(10,24,18,38),(12,20,14,40),(19,45,39,55),(21,47,41,57),(23,43,37,59),(25,63,95,89),(26,70,96,49),(27,65,91,85),(28,72,92,51),(29,61,93,87),(30,68,94,53),(50,76,71,79),(52,78,67,81),(54,74,69,83),(62,82,88,73),(64,84,90,75),(66,80,86,77)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,6,37,42),(2,41,38,5),(3,4,39,40),(7,44,57,18),(8,17,58,43),(9,48,59,16),(10,15,60,47),(11,46,55,14),(12,13,56,45),(19,20,33,34),(21,24,35,32),(22,31,36,23),(25,80,74,92),(26,91,75,79),(27,84,76,96),(28,95,77,83),(29,82,78,94),(30,93,73,81),(49,85,90,50),(51,89,86,54),(52,53,87,88),(61,62,67,68),(63,66,69,72),(64,71,70,65)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H···4O4P4Q6A6B6C6D6E12A···12F12G12H
order12222222344444444···4446666612···121212
size1111441212222224446···61212222884···488

39 irreducible representations

dim11111111111122222224444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4oD4C4oD42+ 1+4D4:2S3S3xC4oD4D4oD12
kernelC42.143D6C4xDic6C4xD12Dic3:4D4C23.9D6C23.11D6C23.21D6D4xDic3C12:3D4Q8xDic3C12.23D4C3xC4.4D4C4.4D4C42C22:C4C2xD4C2xQ8Dic3C12C6C4C2C2
# reps11122221111111411441222

Matrix representation of C42.143D6 in GL6(F13)

800000
080000
0012000
0001200
000080
000005
,
1230000
010000
001000
000100
000050
000008
,
820000
150000
0001200
0011200
000001
000010
,
5110000
080000
0011200
0001200
0000012
000010

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,0,5],[12,0,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[8,1,0,0,0,0,2,5,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[5,0,0,0,0,0,11,8,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,12,0] >;

C42.143D6 in GAP, Magma, Sage, TeX

C_4^2._{143}D_6
% in TeX

G:=Group("C4^2.143D6");
// GroupNames label

G:=SmallGroup(192,1240);
// by ID

G=gap.SmallGroup(192,1240);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,219,1571,297,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<